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~ABSTRACT

Optical scintillation on folded paths has been investi-

gated for the case of spherical waves and a plane mirror as

a folding target. A criterion for the statistical indepen-

dence of the two parts of the folded path was formulated,

utilizing the path integral technique and the Von Karman

spectrum. Employing the same approach, an expression

for the scintillation strength (the log-intensity vari-

ance) on folded paths has been developed. It has been

shown that the scintillation strenqth on folded paths

can be expressed as a product of the one-way scintilla-

tion strength and a function of the distance source-detector

in units of the outer scale. The analytical prediction shows

that the ratio of the log intensity variances on the folded

paths to the one on the one-way path, goes from-for

exact folding (the distance source-detector zero), to

when the detector is far away from , source. The

/ theoretical predictions have been coioborated by preliminary

field experiments.
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I. INTRODUCTION

Intensity fluctuations of visible or near-visible sources,

while viewed through the atmosphere (scintillation), play a

major role in a large variety of situations such as star

observations, optical communication channels, Lidars, power

transmission, etc. It has been understood for a very long

time that the star twinkling is caused by the inhomogeneity

of the atmospheric index of refraction. It is only in the

last thirty years, and especially since the first lasers were

built about twenty years ago, that this intuitive understand-

ing has been put into a rigorous quantitative model. Some

of the better known contributors to this progress are

Tatarski (1,2], Fried (3], Lutomirski and Yura [4], Ishimaru

(5], Lee and Harp [6], Clifford [7], Fante [8,9] and Dashen

(10]. As a result of their work and many others it is now

believed that in most of the situations the processes involved

are fairly well understood and the theoretical predictions

are reasonably close to experimental findings.

Among the problems which are less understood and for which

existing theory either does not give reasonable predictions

or has not been confirmed experimentally, is the problem of

scintillation on folded paths. In general, this descriptive

name stands for a class of situations in which EM fields

propagate in the atmosphere from a source to a target and
back to a receiver (detector) in the vicinity of or at the

9
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same location of the source. Typical situations which belong

to this class are optical radars, communication links (ground-

satellite/mirror-ground), remote monitoring of atmospheric

pollutants, and others.

The class of point-ahead problems such as pointer-tracker

(with fast moving targets), power transmission from space to

earth (which follow a beacon signal from earth to space)

shares a major question with the previous class, that is to

say, the correlation between the two parts of the path.

In this paper we are concerned with scintillation caused

by propagation along a folded path when the target is a

specular reflector (either a plane mirror or retroreflector).

Transition cases in which the two parts of the path are par-

tially correlated are included. To the best of our knowledge,

only a small number of works in the open literature address

this problem. We will compare the results of these works

with ours at the related parts of our paper.

In the second part of this paper (discussion) we describe

some accepted formulas, physical pictures and approximations,

which describe the atmospheric turbulence and the propagation

of EM fields in it. In the third part we develop an expression

for the correlation between the two parts of the path. In

the fourth we give the expressions for the scintillation

strength (the normalized variance of the log-intensity) for

a plane mirror and retroreflector targets. The fifth part

describes the experimental part of our work (system descrip-

tion and results), and a sumaary constitutes the sixth part.

10
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II. BACKGROUND

A. THE SCALAR EQUATION OF PROPAGATION

The effect of the atmosphere on the EM fields propagation

manifests itself through the Maxwell equations. The atmos-

phere is considered to have no free charges (hence zero con-

ductivity and unit magnetic permeability). It is also

assumed, based on experimental findings [8], that the time

scale of changes of the atmospheric index of refraction is

much longer than the time scale of the EM field fluctuations

in the visible and near visible band. This assumption allows

us to suppress the time dependent part of the EM field in

Maxwell's equations. Based on the above conditions, we find

that the vector equation for the EM field propagation is

V2 E(r) + k2 n 2(r)E(r) ( V(V.E(r)) (II-)

where:

k = w/c is the EM field wave number

n (r) = E(r)

S= the dielectric constant

n - index of refraction.

It was found analytically (11,121 and confirmed in experi-

ments [13], that the depolarization of EM fields in the

11



forward direction due to atmospheric turbulence (variations

in n(r)) is negligible. Thus the term, on the right hand

side of Eq. (II-1) which represents the depolarization

(through mixed derivatives) can be neglected [8], and we get

the scalar equation of propagation

V2E(r) + k2n2 (r)E(r) = 0 (II-2)

B. ATMOSPHERIC TURBULENCE

As we can see from Eq. (11-2), the effect of the atmos-

phere on the EM field propagation is caused by the fluctua-

tions of the index of refraction. The index of refraction is

a very complicated function of the atmosphere's constitutents

(aerosols, water vapour , etc.), the absorption coefficients

[14] (continuous and discrete), the temperature and the pres-

sure. Assuming the absorption is negligible (the wavelength

does not match any absorption line or band), the humidity

gradient is negligible, and the aerosols' contribution to

forward scattering is small, then the index of refraction

turns out to be a relatively simple real function of the

temperature and the pressure [15]

77.6 .0075 -6n(r) - 1.0 + r P(r) [1 + X-10lO (.11 -3)

where:

P - total pressure in millibars j
1
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T = temperature in degrees Kelvin

X = wavelength in micrometers

Even though the expression for the index of refraction is

a simple one, it is impossible to get an exact solution for

the scalar equation because we cannot specify the values of

the temperature and pressure along the path. The only way

we can solve this equation is through the use of their sta-

tistical properties.

This approach leads us to express the index of refraction

in the following form

n(r) = n0 + n1(r) (11-4)

where no is the average value of n(r) along the path and

n1(r) is the spatial fluctuation. n0 is found by replacing

P(r), T(r) in Eq. (11-4) by P0, To respectively, and it

obviously cannot cause scintillation. In almost all works

about the effect of the atmospheric turbulence n0 is taken

to be 1.

Since the pressure fluctuations (in the microscale) are

relatively small (16], the fluctuations of n1 (r) are governed

by temperature fluctuations.

Due to their small order of magnitude (less than one

degree), the main processes through which temperature inhomo-

geneities in the atmosphere dissipate, are convection on a

large scale and molecular dissipation on a very short scale.

13
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Therefore, temperature inhomogeneities (fluctuations in

space) which have scale size larger than a certain critical

value, are closely related to the velocity field within the

atmosphere.

Using this relationship between these fields and the

Kolmogorov model of the velocity field, Tatarski [] gave a

statistical description of the index of refraction fluctua-

tions in the atmosphere.

The Kolmogorov [17,18] model is based on the following

assumptions:

1. The fluid is incompressible.

2. The fluid is in a steady state.

3. The fluid is getting a constant power per unit mass

from an outside source.

4. The Reynolds number of the flow (onset by the outside

source) is much greater than the critical Reynolds

number of the air.

5. Kinetic energy dissipation into heat can be done

only on a very short length scale.

Since the Reynolds number of the original laminar flow

is larger than the critical value for air, once the flow is

disturbed, it will turn into a turbulent flow with vortices

whose length scale is limited only by the dimensions of the

flow. This scale is called the outer scale of the turbulence

(L0), and in the surface layer it is usually taken to be the

height of the point above the ground.

14



If the Reynolds number of the flow within this vortex is

larger than the critical Reynolds number, the vortex will

break down into smaller vortices. Since the Reynolds number

is proportional to the scale size of the flow, the formation

of smaller vortices reduces the local Reynolds number within

each vortex until it is smaller than the critical value, and

the flow is stabilized. The smallest vortex size is called

the "inner scale of the turbulence" (Z0 ) .

In the literature about EM fields in the atmosphere,

these vortices are sometimes called eddies.

C. ENSEMBLE AVERAGING, STRUCTURE FUNCTION AND TURBULENCE

SPECTRUM

The averaging process through which we get the moments

of the EM field should be done over many points. Each solu-

tion of the scalar equation represents a diffdrent nl(r)

field (the ensemble average). Since the n1 (r) field has a
relatively short correlation length, averaging over the

distribution of n 1 (r) along a propagation path can replace

the ensemble average. In the literature the ensemble aver-

age is denoted by < >. We will use the same notation.

Assuming the n (r) field is isotropic and stationary,

we can define the following functions.

1. The autocovariance (sometimes called correlation

or covariance) function

Bn lE2) - <nl(rl)nl(r 2 )> (II-5)

15



2. The structure function

Dn(rl'2 O 2> (I-6)

3. The spectrum function 0(K)

+-1f W iK (r -r 2 )

n- f f f(K e f-

Since we assumed isotropic turbulence, the last

equation can be written as

(n) 47r f W Sin (KP) X2 dK (1-7)

n 0 n

In the last four equations:

spatial vectors

0 - Erl-21

K - spatial frequency vector (of the nI (r)

field)

K - 1Xj

Using the Kolmogorov model, the spectrum function 
is

given by

2 -11/3
n) .033C2K " /  for 2I/L 0 < K < 2%/Z 0  (11-8)

16
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This interval is called the inertial range. C2
n

represents the strength of the turbulence and it is

proportional to the variance of nI1 at a point rEl.

In most early works, this spectrum was used (by way of

approximation) in the range 0 < K <_ . This procedure as

pointed out by Yura [19], can cause serious deviation in the

outcome of some calculations. Thus a somewhat different

spectrum is now being used, namely the modified Von Karman

spectrum.

(Ki 2 { ) 2
.033C n 2 )2

n (K) (K 2 + L02 ) 11/6 (11-9)

Hill and Clifford [20] showed that a high K values,

the n (K) is not a decreasing function, but rather it in-

creases to a local maximum and then goes to zero as the

modified Von Karman spectrum.

D. APPROXIMATE FORMS OF THE SCALAR EQUATION

The most commonly used approximations for the scalar

equation are the Rytov (small or smooth perturbation) approxi-

mation, and the parabolic equation approximation.

The Rytov approximation is based on the perturbation

theory and has one basic assumption:

IVlnElI << IV'nE0  (I-10)

17



ThiS restriction is equivalent 
to the assumptiOn that the beam

can be scattered by turbulence eddies 
only once, which means

that it restricts the range 
of applicability of this 

apprOxi-

mation to weak turbulence levels.

Starting with the scalar wave 
equation, and replacing A

by l+nI , and E by exp(T), 
we get

V2T + (VT) 
2 + k2 (l+

n 
1 ) 2  0

Taking T - TO + T1 and n21 << 2n1
, we get

72T0+ (VT 0)2k
2 +V 2T1+ (VTI) 2 + 2(VT 0 )(VT I) 

+ 2k2n  0

We can see that condition 
(11-10) is equivalent to

Il << JVTOJ

and that if To is the vacuum solution of the scalar

equation, the last equation can 
be written as

V2T 1 2VT 0.T 1 + 2k2n1  = 0 (11-1)

which can be solved (VT0 
is known), for the moments of TI .

ZxperixwntllY it was found 171 that the RytOv appZOxima-

tion is valid as lonq as

2 a .124 k716 L11/6 C2 < .3 (11-12)

x  
1n

isI



where:

k = wave number,

L M distance of propagation, and

Cn = the turbulence strength.

The Markov approximation is based on the assumption that

(for an EM field which propagates along the x axis)

2i
IX- << 12ik W-t (11-13)

ax

where

u = u(x,y,z) E (11-14)=exp (ikx)(I-4

As Tatarski showed [2], the condition (II-L3) is equivalent

to the condition 1 << ki0 which is almost always met in the

atmosphere (L0 - imm) for the visible band.

Inserting (11-14) in the scalar equation and using condi-

tion (11-13) gives the following equation, which is called

the parabolic equation

2ik a x-(xr) + V 2 U(x,) + 2k2 n(x,=0)u(x,E0) - 0 (11-15)

where E is a vector in the y,z plane.

The physical meaning of condition (11-13) is that the

scattering due to the eddies, is primarily in the forward

19
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direction [8]. Eq. (I-15) can be solved by using the Markov

approximation [2] or by path integral. Dashen, who was the

first to show that the parabolic equation could be solved

by the path integral technique, argues [10] that the con-

straints imposed on the solution of the parabolic equation by

both techniques are the same, and identical to the one imposed

by the parabolic equation.

E. PATH INTEGRALS AND THE SOLUTION OF THE PARABOLIC EQUATION

In the forties, the path integral technique was developed

R.F. Feynman in an effort to use the principle of least

action as the basic principle of Quantum Mechanics. A good

description of the technique and its application in Quantum

Mechanics and a few other fields of physics can be found in a

textbook by Feynman and Hibbs [21]. The use of the technique

in solving the parabolic equation is described in a report

by D.L. Palmer [22].

The use of the path integral technique in solving differ-

ential equations can be demonstrated by the following example

(free particle in a one dimension motion).

Applying the Shrodinger equation to this case gives us

2 4
-h 8 (+ boundazy conditions) (11-16)

where # is the probability amplitude function.

We know that for a free particle in a one dimension
motion,

20
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.2
L = - -

and the action integral is given by

tb
S - L Ldt (11-17)

ta

Starting from Feynman's basic assumption, namely that

the probability amplitude assigned to the ith path (connecting

points a,b) is

b'Pi(a,b) f exp [is (a,b)/h d1i
a

where the integral is being carried out along the ith path.

Since the total probability amplitude is the sum of the

contributions from all possible paths, it is given by

I.
*(a,b) = JD (paths) exp[is(a,b)/^] (I1-18)

Comparing Eqs. (11-16) and (11-18), we can see that the

solution of the differential equation (11-16) can be found

by the use of the path integral technique, providing we can

come up with the kernel of the differential equation, which
'1

in our eample was obvious.

In the case of the parabolic equation, the procedure is

more elaborate, and since this is not the main topic of our

21



work, we would rather merely quote the result in Section

(III.C) of this work.

F. SCINTILLATION AND SATURATION

Viewing a source of constant output through the atmos-

phere, we see that the intensity varies with time (scintil-

lates), just as in the case of stars twinkling.

Usually the scintillation strength is measured by the

variance of the normalized intensity

a2  <(I/0 2> - <i/i>2 <I2>oI --- -i (II-19)
<I>

where:

I 0 = <I>.

Since it was found that in weak turbulence, the log ampli-

tude of the EM field is a random variable with normal distri-

bution [2], the log of the normalized intensity is distributed

normally in this region. Hence it is useful to work with

the variable Z - In(I/I 0 ) and to define the turbulence strength

by

a2  <L2> - <1>2 (11-20)

Defining &I - I- 0, we can see that if Al << lot since

<41> - 0, then

22

Y ._



n ln(I/1 0 ) = ln[(AI+1 0 )/I 0]

in(l + 1 I 0

Thus Eq. (11-20) can be written as

22>2 <Al2>
a2  <(i/I 0 ) > - <AI/I >2 (11-21)0 0(

10

There are several models by which the scintillation can

be explained. The simplest model which was originally used

by Tatarski 11, describes the eddies in the atmosphere as

spherical lenses whose index of refraction differs from their

surroundings by An = n I . These lenses focus or defocus

(depending on the nI values) the rays onto the target plane.

It. was believed that this picture gives good approxima-

tion only in the weak turbulence region (not more than one

scattering event), until Yura [23] showed that it can be

applied to the strong turbulence region also, if we incor-

porate in this picture the notion of the transverse coherence

length (r 0 ) and its effect on the focusing ability of the

eddies. Due to focusing and defocusing of the beam while

propagating through the atmosphere, the transverse coherence

length of it is gradually reduced and therefore, the ability

of the eddies to focus the beam further, is reduced too.

Hence the growth of the scintillation strength is saturated

and it should reach a maximum.

* 23
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Other models which are used, either in detailed calcula-

tions or in qualitative explanations, are the phase screen

model (6] and the scattering model (24]. The first describes

the effect of the atmosphere on the beam as a distortion of

the phase front due to different optical paths in the turbu-

lence. In turn, the distorted phase front will produce an

interference pattern in the target plane. The second views

the EM fields at the target plane as the sum of fields which

were scattered at small angles by off-axis eddies and the direct

(unscattered) field.

Since in all models, the scintillation strength depends

on the turbulence strength (density and effectiveness of the

eddies) and the total number of focusing or scattering events

along the propagation path, it is found very frequently in

the literature that the integrated turbulence strength (the

effective turbulence strength) is given by the Rytov param-

eter which was defined in Eq. (11-12). Sometimes it is

denoted by 8 or T .

It was found experimentally [7] that in the weak turbu-

lence region (also called the Rytov region), in which the

intensity distribution is log normal, a2 up to 0.3. As

a2 grows beyond this value, the intensity distribution isx

close to the K distribution (25], the scintillation strength
reaches a maximum 126] and starts to decrease. As a2

further, the intensity distribution is best described by the

exponential distribution [10,27] and normalized intensity

variance approaches 1.

24
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III. STATISTICAL DEPENDENCE OF THE TWO
PARTS OF THE FOLDED PATH

A. PREVIOUS WORKS

As we mentioned in the first chapter of this work, the

question of whether the two parts of the folded path are

statistically independent, is a basic one when we try to

describe the statistical behaviour of the EM field which

propagates along it. Once we can assume statistical indepen-

dence, we can treat the two parts separately, applying the

well known results for the one-way propagation to each of

them. Since our main object is the scintillation along a

folded path, with a special emphasis on short distances be-

tween the source and the detector, the first subject of our

analysis is to try to define a criterion for the statistical

dependence between the two parts.

Among the works that we were able to find in the litera-

ture, which analyze the folded path question, some like the

theoretical work by Yura [28] and the experimental work by

Ben-Simon et al., [29], assume statistical independence of

the two parts. Yura gives the condition for independence as

d > DS, Dd

where d is the distaace source-detector and Ds, Dd are the

aperture diameters of the source and the detector respectively.

Since in Yura's paper the target is diffusive (volume of

25
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air molecules) and the reflected beam is totally incoherent,

we cannot apply this result to our case (specular target).

In other works [30,31,32] the question of the indepen-

dence of the two parts is related to the wavefront tilt or

angle of arrival (AOA) fluctuations which depends on the large

scale eddies. Since we are concerned with scintillation

which is caused primarily by the small scale eddies, we can-

not use their results.

Before we continue our analysis, we would like to mention

without going into detailed explanation, that the usual cri-

terion for independence between two diverging paths (their

end points should be separated by a few isoplanatic patches),

cannot be applied in our case, due to the fact that in a folded

path case certain parts of it (near the target) might be very

close and certainly correlated to some degree. As we will

see later, this correlation affects the scintillation and

we cannot ignore it.

B. THE EXPRESSION FOR THE PHASE VARIANCE

We start our analysis with the effect of the atmospheric

turbulence on the phase of the propagating EM field.

The phase fluctuations (S) relative to the vacuum value,

due to the non-uniform medium, are given by the integral

along the optical path.

L
S - k f nl(x)dx (III-1)
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Since <nl (x)> = 0

L 
L

<S> <k f nl(x)dx> = k J <n1 (x)>d =

0 0

The variance of the 
phase fluctuation is

2 = <2> - <S>2 = <S2 >

S

and

. L 
L<$2> M <(k f nl (x ) dx) (k 0f nl (x ')dx ')>

0 0

W k 2  dx dxin f 1 (X)Z 1 (Xl)>

L L

<S > = k 2  f dx ,( dx'Bn(xx')

Since in the golmogorov 
model, Bn(xx') Bn (y) where

y Ix -X'j and it is the same fi,nction regardless of the

origin of y, <S2> can 
be approximated by

~22L/2 
.. -3

< S2 > .. k L n %y ) dy
-L/2
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provided L >> where y is the range at which

Bn () << Bn (0)

As we can see from Eq. (111-2), the variance of the phase

is related directly to the field of the index of refraction.

This is the reason we chose to utilize the phase variance in

the criterion for statistical dependence/independence between

the two parts of the folded path.

In this part of the work we chose to work with an infinite

plane mirror as a folding target for two reasons:

1. It is easy to compare the case of a folded path (with

a plane mirror) when the angle between the two parts

of the path is 29, to the case of a straight path

(28 = v) (see Fig. 1). There is no discontinuity of

the rays and there are no singular points at the target,

as in the case of the corner cube.

2. When an infinite, or at least very large mirror is used,

we do not have to take into account the possibility

that part of the beam will not be reflected. Thus at

this stage, we can neglect the effect of beam wander.

C. THE RELATIONSHIPS BETWEEN THE MEANS OF THE EM FIELD IN
VACUUM, THE EM FIELD IN A NON-UNIFORM MEDIUM, AND VALUES
OF THE PHASE VARIANCES

Following Dashen [10], we can write an expression for

(where E - Re(s) at a point (L,r) due to a point source at

(0,E). This analytical signal is the solution of the para-

bolic equation [22] and it is given by
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E(0,EO,L,r) kfD(paths)

L2
exp{ik J [(r'(x)) 2-n (r+e x) ]dx} (111-4)

where:

dr(x)
r' (x) =

i x  - unit vector along x axis,

From Eq. (111-4) we can get the expression for the analytical

signal of the vacuum field by setting nI - 0. Thus we get

F 0 fD (paths)

L2

X exp{ i (r'(x)]2dx} (III-)
0

Taking the ensenble average of Eq. (111-4) we get

<f> 4 < D(paths)> (1II-6)

ik L 2  L
xp{T0 f WWI(dx- ik 0 ni[r(x)+Pxxldx}

- ik L [r'(x)] 2 dx}

L
x <.xp{ik f nl(r(x) +exx)dx}>

0 -
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Using Eq. (III-1) we can write

L

0

where S1 = iSP and SP is the phase fluctuation along the path

P. Since it is generally accepted 133,34] that the phase

fluctuation in the atmosphere is a Gaussian random variable

with zero mean, SP is also Gaussian with zero mean, and

therefore it satisfies the following formula (*

SP  <P(S ) 2>
<e i> =exp"

ThusI. .___ __ __

s dt For Gaussian random variable a, with zero mean and withstandard deviation a

.<e> = f e f (a, 0) do eexp [- 2da

- 1 ___x_[_
2 - 2,  , d* xp(a2/2) I~x[(-2)2l

2]da

W '21 'o -- 2 2  /2). -f 2 2

- exp[a 2 /2] f f( a 2 )d exp[a 2/21

where fla,x) is the normal distribution function for mean -x
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is P(SP2
<e > = expl- 2

Using Eq. (111-2) we get

<exp{ik f nl(r(x)+ex x ) dx}>
0

k 2 L fL Bn [ [(r(x)_r(x, ) 2+ (x-x,) 2 1 1/21 dxclx,}
=exp- -T f 0 n

Assuming that the optical paths 
in our case, which are the

main contributors to the path 
integral, satisfy

t_(x) - r(x')l << Ix - x')

Eq. (111-7) can be approximated 
by

<exp(ik f nl(r(x)+ex)dx}>

0

2  L L

Inserting Sqs. ((11-5), (111-9), (11-2) in Eq. (111-6), we

get
<S2 >

C0 (,O O, L,,)exp{ T- L1-10)
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where <$2> is the variance of the phase fluctuations, due to
L

propagation along a path of length L.

From Eq. (III-10) we see that the effect of the turbulent

atmosphere on the average of a propagating EM field, can be

expressed by the variance of the phase fluctuations along the

geometrical path.

It is obvious that in vacuum, apart from a phase shift

due to the reflection, the fields EF and E2L as described in

Fig. 1, are the same. We can ask ourselves what will be the

relationship between <e F> and <e2L>? Since in the case of

<e 2L> there is no folding at all, it is obvious that in this

case there is no statistical dependence (relating to the

folding). Hence, the closer <eF> to <C2L>, the less depen-

dence (statistical correlation between the two parts), we

have.

Using Eq. (III-10) and the observation that up to a phase

0 0constant CF = 2L' we come to the conclusion that the statis-

tical dependence between the two parts of the folded path,

can be determined by the relationship between <S2 > and <S 2L> ;

the closer their values are, the less the two parts of the

folded path are correlated. Therefore, in the next steps we

will calculate $2 and S 2 (we omitted the angular brackets

for the sake of convenience), compare their values, and formu-

late a criterion for statistical independence.

Before we go to the next step of the analysis, we have

to evaluate the effect of the constraint which was formulated

in Eq. (111-8), on the applicability of our approach.
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"2L"e .

Figure 1. The reflected (folded path) and transmitted
EM fields at distance 2L from a point source.
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Since the point (x,r(x)) is a point on the optical path

through the turbulent medium (which is given by the normals

to the wavefronts), the constraint (111-8) is equivalent to

dr(x)

which means that the normals to the wavefronts are almost

parallel to the x axis, which in turn means that only small

angles of scattering are allowed. This constraint is the

same as the one for the utilization of the parabolic equa-

tion [8,10] (Eq. (11-13)), and both are met for almost all

conceivable conditions.

D. THE VALUE OF S2L IN TERMS OF S2 , FOR THE VON KARMAN
SPECTRUM L

From Eq. (111-2) we can write

L .L L
s L k 2 f d fdx' Bn(Ix-x'j)

0 0

and

2 2  2L 2L
S 2 k f dx f dx' (xxl

L 0 0

Working on both integrals and using the transformation

z X-X' + x

34

MEM!i



y = X + X' Lji Z x

(x~ x, 1
yez

k2 Li  2Li-Z 0 2Li+z

s2  = k2{f dz f 2 B (zi)dy+ J" dz f Bn(IZl)dy}
Li  Li -z

= k-{ f dz B (Izj) (2Li-2z) + f dz Bn(IZI) (2Li+2z)
0 n -Li

where L. is either L or 2L.1

Taking z -z in the second term, we get

L.

S2 2k2  f (L.-Z)B(z)dz
Li 0

Inserting the explicit forms of Bn (x) [2] and the Von Karman

spectrum for * (K)In
n(x) =4, f n(Kix) n(Kx) K2 dK

.033 C2 (x)
*n(x,x) Z- - 2 11/6

n (K + L-

2
Assuming C2 (x) = constant and taking y a KL0, we get
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S2 A i/0 (Li/L0 -z) 0 d Sin zy)L = A 0 dz z 0 f (y2+l) 11/6

where:

A = .033 23 ? k
2 C2 L 8/ 3

n 0

and z - x/L0.

Using formula 2.3(11) of Ref. [35] we get

Li/L

s2  of dz(Li/L0-z)z1/3K (Z)SL 1 ,0fi0 1/3

where:

A1  .033 25/3 r 3/2 k2 C2 L8 / 3 /r(11/6)
1~nO0

and Kl/3(z) = Modified Bessel function of the third
kind.

Solving the integral in Eq. (III-ll) (detailed solution

is given in Appendix A), gives for (L i/L 0 ) >> 1

1/2
S A1 r r(5/6)
Li 2/3 (Li/L)

which is the same as the expression which is given by Tatarski

[2]. Thus we can see that for large (Li/L 0 ) , L is approxi-

mately linear in Li and

36
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252 2S2 (1II-13)2L L

2
E. THE EXPRESSION FOR S F

The geometry of the folded path and the notations which

we use in this section are described in Figure 2. We assume

that the mirror is large enough so that:

1. Diffraction effects can be neglected.

2. There are no fluctuations in the amount of energy being

intercepted by it.

We also assume that the field at the point D (EF) can be

found by the path integral technique, using SMD as the geo-

metrical optics path. It should be pointed out that since

the calculation of the EF value by the path integral assumes

dr (x)
<< 1 (scattering at small angles)

the application of the technique to this type of path might

be questionable, for the reason that it includes one point (M)

at which the above condition is certainly not satisfied.

Our justification for the use of the path integral tech-

nique along this type of path, is based upon two arguments;

1. In the case of fields propagating in vacuum, we know

that apart from a phase constant, ED - E2L. Therefore,

we can use the path integral technique (Eq. (111-5))

along the path SMD by excluding the point M from the

integration.
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I

Y

D

(y ,x1)

P X

S x x, jm-n) X,/1x

Figure 2. The geometry and notations of the folded
path case. M - a plane mirror; S -a point
source; D - detector. The d -.stances SM and
DM are of length L.
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2. If the results of our analysis in the two extreme

cases;

a. = 0

b. 6 ir/4

match the results which are obtained in other ways,

the fact that at the point M, ca- is infinite, has

no effect on the applicability of the path integral

technique to our case.

At the end of this section we will discuss the second

argument.

As we saw in Section III.C, in order to find EF we have

FF2 b
to calculate SF b

s 2 k2 ff dxdx' B (x-x'I)
F SMD n

where the integration is along the line SMD. Thus

s2 k 2 fL dxdx' B (!x -x'J) + k2  2L dxdx' B (lx-x'l)
0 nL n

+ k 2  L 2L + 2 2L dx
0 L L

L
X f dx' B(Ix-xI)

I1 + 12 + 13+ 14
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where integration on the interval O,L means integration along

SM, and on the interval L,2L means integration along MD.

In integrals 13 and 14' x' is the distance of the point

(y,x1 ) from the point M along the line MD, and the notation

Ix-x'I stands for the actual distance between the points,

which is denoted by P.

Using the transformation y - x-L; y' = x'-L

1 2 = f f dydy' B niy-y'I-) Ii

Since B n(Ix -x') is symmetric in x, x', 13 = 4P and

therefore

2 2 L

s 2 = k2  ff dxdx' Bn IX-X'I) (111-14)
0

L 2L dx'B(1 x-x 1 ) + 30 L n '1 3

From Eq. (111-2)

= 2

The evaluation of 13

From Fig. 2 we can see that
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/ (Lxl)/Cos(2e); dx' -dxl/Cos(20)

(111-16)

y = (L-xl)Tan(2e)

- l= P = [(L-Xl) 2(2e) + (xl-x)2 1/2

Hence 13 can be written as

2 L L

Ik2 L x f d1 Bn(P(x'x 1 ))
13 = cos(28) o 2L SinB

and obsevin tha

Applying the transformation (x,x I ) (P,a) and observing that

P Sin(2+)1. x - L - Sin (20)

2. x = L P Sin a Cot%26)

ax ax
X3X. J = W p Cot( 28)

3. J(Pa ax1  ax1

4. For 0 < < T/2 - e

o < <L Sin(20) =P
sin(26+a)

5. For w/2-8 < a ff-2e

0 < P < Si(2 2
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we get

Sr k2 /2- P1k fsin(2e) da f PB (P) dP0 0

1T-26 P2
+ / f da f PBn (P)dP)

Making the transformation B = i-(2e+) in the second

integral, we can see that it is equal to the first one. Thus

2k i/2-e P1

2k2 i da f 1 PB (P)dP
3-97U0 f0 n

where

P L Sin(26)
Sin(26+a)

Inserting the explicit forms of Bn(P) and the Von Karman

n(K), and assuming that n(K,x) = n (K), we get

13 - A f d f dy f dz z(z2+l)-11 /6Sin(yz)

0 0 0

where:
.033 Or k2 C2 L8/3

in 0
A =s-(2e)
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z = L0K y = P/L 0

L Sin(2e)Yl =Lin(2+)

Using formula 2.3(11) of Ref. (35], we get

13 A1  f da0 f dy y4/3 K 1/3(y)

where:

.033 2 1 3 7 3/2 k2 C2 L 8 3

A 1 Sin(2e) -r(11/6)

K = Modified Bessel function of the third kind

r = the gamma function

Comparing the last equation with Eq. (111-12) gives

1 22/3 L0  S2  7r/2- Y 4/3
3 Sin(2e)ir1/2 r(5/6)L L d K/ 3 (Y)

Inserting the last equation and Eq. (111-15) into Eq.

(111-14) gives

ii S2 2

or by using (111-13)
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SF2 2 2L11 + f(y0,8)1 (III-18)

where

A 2 /2-6 4/3
f(y0 ' ) 0 0 d 0 K1 /3(y)dy (111-19)

and

22/3
A2  

=  1/2 r 2 /3

r(15/6)

= L Sin(26)
L 0

Yl= Y0/Sin(26+a)

We solved Eq. (111-19) numerically and found out that for

small angles 8, which is the case in most of the applications,

the f dependence on 8 is very weak, and therefore

f(y 0 ,8I) & f(y 0 ).

The result of the numerical integration is described in

Figure 3, and we can see that

lir f(y01 ) - 1 (when 8 0, yo 0 )YO

lim f(y 0 ,8) 0
684.lr/4

and therefore
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2S 2 8eo

S2 (L,) = (111-20)
S 2 = ff/42L

These are the values of S2 for the two extreme points of

the transition region (from exact folding to statistical

independence of the two parts of the folded path). In

previous works on the subject of scintillation on folded

paths, the authors assumed either exact folding or statistical

independence of the two parts of the folded paths. Thus, as

we pointed out in Section III-E, we can compare our results to

those calculated by others, only at these two points.

F. A CRITERION FOR STATISTICAL INDEPENDENCE

We have now enough information about the behaviour of

S (L,@), in order to define a practical criterion for statis-

tical independence of the two parts of the folded path.

3trictly speaking, the two parts are independent only for

a M it/4. Yet because f(y0,,) decreases very fast at small

yo and has a very long tail (approaches slowly to zero), we

can define the region at which we have statistical indepen-

dence, as the region in which f(y0 ,8) < a-1. From Figure 3

we see that this criterion is met (for small 8).

y0 > 4

Since
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L Sin (26)
Lo0

for small angles 8, yo can be written as

Y0 -Z D/L0

where D is the distance source-detector. Thus we see that the

statistical independence between the two parts of the folded

path depends on the distance source-detector, expressed in

units of the outer scale.

As we said at the beginning of this section, one of the

justifications for employing the path integral technique in

our case, even though the main constraint on its utilization

is violated at the point M, is the observation that the re-

sults in the extreme cases (8 = 0; 6 - /4) match the results

which are obtained by other techniques.

For the case of 8 - i/4 we got

2 2sF(e - w/4) = S2 L

which is the expected result based on physical arguments and

the results of Section III.D.

For the case of 8 - 0 we got

S2 (e 0) 2S2  4S 42 (2
SF( 2L LL
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When a beam propagates back and forth along the same turbu-

lent medium, the phase fluctuation due to each path element

Ax is doubled. Thus comparing the random variable S in the

case of a path of length L (SL) to the case of a folded path

with 8 = 0 (SF ), we get

SP = 2SL

From probability theory, this gives for the variances

2 4S2F L

which fits our results.
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IV. SCINTILLATION STRENGTH FOR THE FOLDED PATH

A. THE RATIO BETWEEN THE SCINTILLATION STRENGTHS FOR THE
FODE PATH AND THE ONE WAY PATH

The log intensity variance for the Rytov region for

spherical waves is given by El]

o (L) = .5 k7 / 6 C2 L1 1/6  (IV-l)
n

In the strong turbulence region (exponential distribution

of I), the scintillation strength is given by the variance

of the normalized intensity (8]

2 a + 69)1 2 ) +(22/5 (V2

Comparing Eqs. (111-12) and (IV-l) we get for the Rytov

region

2 6.31 5/6 2 A(kL L5/6S2 (IV-3)
1T 3/ 2 k5/ 6 L 3  S L  0  L

or for a path of length 2L

a2(2L) A 225/6 L5/ 6 S2 (IV-4)

From Eq. (111-18) we get for the folded path

a2(F) A 211/6 L5/6 S2 E1+ f(y 18)]

I L 0
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J
We can express the ratio between the folded path scintilla-

tion strength (a2(F)) and the one way scintillation strength
(a 2LW), in the weak turbulence region, by

a2(L)

This ratio is the parameter which we are going to measure in

the experimental part, in order to verify our model. The

dependence of R on yo (for small 8) is described in Figure 4.

B. DISCUSSION AND OBSERVATIONS

1. The Range of R and the Saturation of Scintillation

Strength

As we can see from Eq. (IV-5) and the corresponding

figure, the range of R is

211/6 < R < 217/6

Therefore when we work with a system for which 8 is close to

zero or zero, we should expect the scintillation strength to

be about seven times greater than the scintillation strength

of the one-way path.

One should be aware of this large ratio especially

while designing a system or an experiment which is based on

the log-normal distribution. Since the region of the log-

normal distribution, as we mentioned in Chapter II, is given

by
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in the case of exact folding (6 = 0), the upper limit of

this region can be reached along relatively short distances

and/or relatively weak turbulence levels.

On the other hand, since saturation can be achieved easily

(relative to the one way case), it provides a way of carrying

out experiments in the saturated region without the difficul-

ties of using very long paths.

2. Comparison with Other Works

Smith (36,37] found that the scintillation strength

of a spherical wave which propagates along a folded path

(plane mirror) with e - 0 is

a2(F) 64r 2 k2  dx f K n (K) Sin 2 K x(2L-x) ]dK (IV-6)
0 0 n k

Since he used the phase screen approach [6] and the Kolmogorov

spectrum, his results are applicable only in the Rytov region

and there is no dependence on the outer scale.

Using the Kolmogorov spectrum and the Mellin trans-

form (formula 6.5(15) of Ref. [35], we get from Eq. (IV-6)

L
G (F,e -0) A3  dxx (2L-X ] 5/6

0
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where

A3 = .033(4)27/6 r(-5/6) (-1) Cos(5?r/12)Tr2 k7 / 6 C23 n

Making the transformation

y = x/L

we get

a (F, 8 =0) = A L1 1/ 6  f dy[y(2-y)] (IV-7)

0

It is well known that for the one way path of length

L [2]

2 2k2 L Sin2 K2 (L-x)]d
a 2 (L) 16 r 2k f dx f Kn(K) Sin 2  2L

0 0 2kL

Following the same steps as in the previous case, we get

L

2 (L)= A4  f dx (Lx)] 5/ 6

"0 L

where

A4  .033 4(-1) r(-5/6) Cos5rr/12) it 2 k7/ 6 C2
45 n
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and we can see that

A3  - 27/6 A4

Taking y - x/L we get

a2 6II/6

a(L) = A4 L11/ f dy[y(l-y)]5/ 6  (IV-8)
0

From (IV-7) and (IV-8) we get

2 A3
a(Fe = 0) A 3 Y(2-y)]5/6dy

R 2 W A
A4  f [y(l-y)] 6 dy

0

Taking y - 2x in the upper integral and observing that the

integrand in the lower integral is a symmetric function about

y = 1/2 we get

456 /2 5/6c

27/6 A4 2 45/ 6  f [x(l-x)/
R 1/2 - 217/6

A4 2 f [x(1-x)1 5 / 6 dx
0

which is exactly the same results as we got by using the path

integral technique.

It is easily seen that even though the results for

9 - 0 are the same (using the two techniques), Smith's paper

cannot give the values of R for e # 0.
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Gamo et ral., (38] measured the value of R (for e = 0)

along a pat" of k74m at night (using a collimated beam HeNe

laser), to be 6.668. From their paper, it is not clear

whether the measurements of a (L) and aM(F) were done

simultaneously.

3. The Weight Function in the Case of Exact Folding (9 = 0)

The relative contribution to the scintillation of

different points along the path is described by the weight

function.

From Eqs. (IV-7) and (IV-8) we can see that the weight

functions Wi (x) for spherical waves are:

For one way WL(X) = x(l-x)]5/6

For the folded path WF (x) = [x(2-x)] 5/6

The two functions are shown in Figure 5.

From Figure 5 we can see that in the case of the folded

path (8 = 0), the main contribution to the scintillation comes

from the vicinity of the mirror. In the case of the single

path,.the main contribution is from the center of the path.

Since it is very unlikely that we can find the proper condi-

2tions under which Cn(x) along an atmospheric path is constant,

we should be careful when we compare results from the two types

of path.
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4. The Effect of Path Folding on Aperture Averaging

The discussion and the evaluation of the scintillation

strength in previous sections assumed that we have a point

detector. The term point detector refers to a detector with

aperture diameter (Dd) smaller than a critical length (D0).

The aperture averaging can be explained qualitatively

in the following way [7,40]. Due to atmospheric turbulence,

the EM field at the detector plane has a certain spatial struc-

ture. This implies that the intensity (the modulus of the EM

field) has a spatial structure too. In order to measure the

full effect of the scintillation utilizing direct detection

of intensity, the detector aperture should be smaller than

the distance along which the intensity variations are negligi-

ble (D0) , otherwise the detector will average different

intensities across its aperture. (In the language of Young

(401, the detector will filter out the high spatial frequen-

cies of the intensity's spatial variations.) The critical

length is given by

BI(D 0 ) B i (0 ) •1

where BI is the covariance function of the intensity at the

detector plane.

It is well known [1,21 that in very weak turbulence

Do  R (XL) 1 /2

where A is wavelength and L is distance of propagation.
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In the case of strong turbulence, it is not clear

what is the exact value of O (8]. The difficulty in obtain-

ing the D value arises from the difficulties in calculating

the fourth moment of the EM field. Since the transverse

correlation length of the EM field (r0 ) (23] is a decreasing

function of the distance whilst I F is an increasing one, at

a certain distance the field and the intensity spatial covari-

ance functions are dominated by r0. Thus, beyond certain

turbulence strength, D0 should be a function of r0 1

As Yura [28] pointed out, the MCP of the EM field

is proportional to the phase variance.

It follows from the above mentioned arguments that,

as the phase variance increases the critical length DO

decreases. Since we found that in the case of the folded j
path

S = 211/(l + f(y 0 ,)] S2SF

it is obvious that while working with the folded path, we

should utilize detector apertures which are much smaller

than those which are used in the one way case.
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V. EXPERIMENTAL WORK

The main object of the experimental part is to measure

the values of the function R(y0 ) and to compare them with the

analytical function which is given in Eq. (IV-5).

In order to obtain the values of R(y0 ), we have to

measure simultaneously the values of the one-way scintillation

strength (o2) &nd the scintillation strength for the folded
2

path (a ). These measurements should be done at several source-

detector distances (assuming that L0 is the same for all

measurements).

A. THE EXPERIMENTAL SYSTEM

The experimental system consists of two major parts:

1) The optical system;

2) Data reduction system.

1. The Optical System

The optical system is described in Figures 6 and 7.

The main problems which we dealt with during the

planning and construction phases of our work were:

a) Selecting proper sources.

b) Making sure that the beams which propagate along the

one-way path and the folded path see the same turbulence.

c) Obtaining high quality optical elements with rela-

tively large apertures (within our budget and time

span constraints).
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Figure 6. The optical system for measurements with e 0.
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The sources of our optical system should meet certain

requirements:

a) Low noise. They should have low values of intensity

variance in order not to obscure the intensity fluc-

tuations due to the atmospheric turbulence along

relatively short paths.

b) Operation in a pulsed mode or a simple way of

modulation. (This requirement evolves from the

way we were planning to subtract the background

noise.)

c) When passing through the same turbulence, the respec-

tive measured scintillation strengths should be highly

correlated.

d) Synchronized operation either in pulsed or modulated

modes of operation. This requirement makes it possible

to compare pairs of pulses.

Technically it is easy to employ a GaAs laser at the

plane mirror end (the one-way source) in a pulsed mode, and

a mechanically chopped HeNe laser at the other end (folded

path source). These sources in these modes of operation,

were used before by the Electro-Optics group of the Physics

Department at the NPGS in previous experiments (41].

a. The Sources

It was found (assuming the sources' intensities

are noz=ally distributed) that the normal intensity variances

of the sources were:
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1) HeNe laser (Spectra Physics Model 155)'mechanically
2 -

chopped; SI < 5 x 10- 4
2 -

2) 12 elements array of GaAs; S2 < 9 x 10-4

2 1 - o hi a e

3) 8x8 elements of GaAs; S < 5 X 10-4 .

matrix which is manufactured by Laser Diode Labs, was

equipped with a Lucite parallelopiped rod mixing ele-

ment, in order to enhance its output uniformity. This

mixer was designed and built at the NPGS.

The conclusions from these measurements were:

1) In view of the expected levels of scintillation strength,

all three lasers can be incorporated as sources in the

optical system.

2) The 8x8 GaAs is a better (more stable) source than the

12 elements array GaAs. Therefore we decided to continue

the experiments with the 8x8 GaAs laser only. In the

following text, the term "GaAs laser" refers to this

laser.

The correlation coefficient between the HeNe and

the GaAs lasers were measured in a configuration which is

described in Figure 8. The GaAs in a pulsed mode was triggered

by the mechanical chopper via a pulse generator. In this way

we were able to get interlaced series of pulses with a con-

trolled time separation between them. For each laser we

measured the log-intensity variance (in a way which will be

described in Chapter V.B) and each pair of variances (one

for each laser) was compared. For each run we calculated the
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HeNe laser

Chopper

Beam Splitter ....... GaAs pulsed laser
(NPC Pellicle)

Aperture -I-

Detector 0
Figure 8. The configuration of the optical elements for

the measurement of correlation coefficients
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statistical correlation coefficient between the two series

of variances' values. One run of this part of the experiment

is described in Figure 9. In this particular run we got the

highest value of correlation coefficient (.973). In the other

runs the correlation coefficient values were much smaller.

As a result of this measurement, we decided to

replace the GaAs laser with a second CW HeNe laser (similar

to the first one), which is modulated by a Pockels cell

modulator. (We tried to use a second mechanical chopper in-

stead of the Pockel cell modulator but failed, because we were

unable to synchronize it with the first one.) We found that

the values of the two series of scintillation strengths (log-

intensity variances) of the two HeNe lasers were highly

correlated. A typical run with p - .996 is described in

Figure 10.

The measurements of the correlation coefficients

were carried out in the basement corridor of Spanagel Hall

at the NPGS. (Its structure and turbulent features are des-

cribed in Ref. 41.) The path length was 145 meters and the

time separation between the pulses of the two lasers was

250-350 Us.

Based on the results of these experiments, we

decided to continue our experiments with the two modulated

CW HeoNe lasers.

b. Frozen Atmosphere

As we mentioned in Chapter I of this paper, the

atmosphere can be considered frozen for time intervals of

65



4)U l

> 4J

0) 041

+1* -H $4
LiU -4 0

zCI

a: 0 -

+ ~cr 4

+44

+ 4

441W

41

+ -4
U. a4

*~~ Aj U 4C 4

(~~-0tX$) soIIJA*'

.-. n v m I

A' J-.. '6 J ' 4

(2-O-X 3UUNAQQ

-I .------------------- - -66



>I

+ 0

+ + U.40

40 W (

.4 Q4

C) 41=

e4J

(nA Cu
+. - iz :3

I + ceil4 4

o: V
.0

0 i

Z .44

'-4

in m cm

67



up to 1 ms. Since the round trip time of flight along the

folded path (when the target is up to 10 km from the source)

is less than 70 Us, the atmosphere can be taken to be frozen.

In our experiments we employ two interlaced

series of pulses with a time separation (At) within each

pair of pulses. The time separation in our system is dic-

tated by the equipment which was available to us, and is not

less than 250 Us.

We tested the assumption of frozen atmosphere

by measuring the correlation coefficients of two series of

log-intensity variances. The two series of pulses originated

from one source by using two series of slits on the mechani-

cal chopper for the HeNe laser, or by the use of the double

output signal of the pulse generator, for the GaAs laser.

For the "double pulse" HeNe laser experiment

with t = 270 us, the correlation coefficient was P = .998.

This experiment which was carried out in "the corridor" shows

that for time separation of up to 270 Us, the atmosphere is

frozen.

This experiment served also as final checkup for

the equivalency of the two channels of the data reduction

system (see Chapter V.B).

c. Optical Elements

We originally planned on doing the experiments

with two targets; a plane mirror and a corner cube. The

original configuration of the optical system was, dictated

by four major requirements:
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1. High quality elements. To maintain the phase relation

between different parts of the beam.

2. Large aperture elements. To intercept a large part

of the beam, in order to avoid the effect of different

transmitted/reflected intensities on the scintillation

strength.

3. The laser at the target end (the one-way transmitter)

cannot be placed behind the target, because its beam

cannot be transmitted through the corner cube.

4. The beam-splitters in use should not cause an inter-

ference pattern.

The original configuration of the optical system

is described in Figure 11.

The beam-splitters and the plane mirror target

are made out of large pieces of flat fused Quartz, which were

coated with Al, to achieve the required reflectivities, at

the NPGS facilities. They were checked for flatness by

interferometric techniques. A full description of the testing

and coating processes is given in Reference 42.

The interference patterns due to the double reflec-

tion from the two surfaces of the beam-splitters, can be

eliminated by applying an anti-reflection coating to one of

the surfaces. Since we were not able to use this technique

for various reasons, we used a different approach.

The beam-splitter at the detector end is located

very close to the detector (5-10 cm). Hence, by using thick

plates (taking apart the two secondary sources) we can eliminate
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Figure 11. The original configuration of the optical
system for measurements with e 0. a
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this problem when the beam has a small angle of divergence.

This beam-splitter thickness is 1/4", it has an elliptical

shape (4 x 6"), and was coated to give a ratio of 1:2. The

beam-splitter at the target end is a circular (6" diameter)

plate of 1/2" thickness. As we can see from Figure 11, its

interference pattern (at the detector) was eliminated by

applying the Al coating to the back surface and working with

a polarizer and angle of incidence equal to the Brewster

angle, to eliminate the reflection from the front surface.

In the course of the experiments, it was found

by observing the beams at the detector end, at night, that the

beam which originates at S2 is very homogeneous but the

homogeneity of the beam that originates at S1 suffers a great

degradation due to its double pass through the Quartz beam-

splitter at the target end. Sincewe use a back surface

reflection for the first beam (it passes this beam-splitter

twice too), the only explanation for the different effects on

the two beams, is that the inhomogeneities in the beam-

splitter material are of larger length scale than the diameter

of the beam near the laser output aperture.

Because of the beam quality degradation, we changed

the optical configuration from the one which is described in

Figure 11, to the one which is described in Figure 6, uti-

lizing the circular beam-splitter which has 70% reflectivity

as the target mirror (with the coated surface facing the

detector end).
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As a result of the above mentioned change, we

abandoned our original plan to measure the R values with a

retroreflector as a target.

d. Other Elements

1) The mechanical chopper is constructed out of circular

metal plate which is rotated at about 3000 rpm by an

electrical motor. There are 20 slits on the circum-

ference of the metal plate with a ratio of 1:4 between

the slit's width and the opaque regions between them.

The chopper modulates the CW HeNe laser beam at a fre-

quency of about I kHz with "pulse" width (laser on) of

about 200 us. An LED (GaAs) and a detector which are

placed on opposite sides of the chopper plate, provide

a trigger signal at the same frequency as the laser

modulation for the whole system. Due to this arrange-

ment, we do not have to use a stabilized chopper.

2) The Pockels cell modulator is made by Coherent Asso-

ciates (Model 3003).

3) The diameter of the aperture in front of the detector

is 3 mm.

2. Data Reduction System

The data reduction system is described in Figure 12.

It is a modification of a system which was used by the EO

group for measuring the scintillation of on* source. This

system and its mode of operation are described in detail in

Refs. (41, 42].
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Detector
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Amplifier
FR. (PAR model 113)
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Electronic
Switch

AD 7510D1

Figure 12. Data reduction system
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The elements which were added by us are:

1. The second channel (demodulator and log converter).

2. The electronic switch.

3. Clock.

4. Software (for the Nic-80).

The electronic switch (AD 7510D1) alternately sends

the signals from the parallel channels to the computer.

The clock is constructed of a set of pulse generators

which are triggered by the mechanical chopper's LED-detector

pair. The time sequence of the signals is described in

Figure 13.

The change in the software enables us to store the

measured log-intensity values of the two series in different

storing spaces, for later calculation of the log-intensity

variances.

The main steps which are carried out in each channel

of the data reduction system, are the following:

1. The Demodulator samples the signal intensity and later

(between pulses) it samples the background intensity.

It subtracts the second from the first and sends this

difference to the log-converter.

2. The log-converter takes the log of the input signal and

sends it to the computer input via the electronic switch.

3. The computer samples the input signal, converts it from

analog to digital and adds one to the proper counter.

After sampling 16,384 pulses, it calculates the variance
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Chopper's LED - Detector
pair

_ __ __Main Trigger

7 -§ L Mechanically Modulated HeNe

Pockels Cell Modulated HeNe

I I Sampling line of Channel
I signal

, , Sampling line of Channel
I background

Output of Channel I

-, - Combined Output
- (After switch)

I I I Sampling time of Nic-S0

Time scale (ms)
o .5 1.0 1.5 2.0

Figure 13. Time sequence of the system's signals
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assuming that the distribution (after the conversion

to log intensity was made by the log convertor) is

normal. The calculated value is printed on the

assigned printer.

Note: When we measured the sources' (lasers') normal

intensity variances, we bypassed the log con-

vertors, and used the average value of the

intensity distribution to normalize it.

After we completed the modifications, we tested the

two parallel channels for equality by comparing two series of

pulses which came from the same laser. The high correlation

coefficient between the variances of the two series (p = .998)

proves that the two channels are equal. The results of this

experiment are described in Figure 14.

B. EXPERIMENTAL RESULTS AND DISCUSSION

The final experiment was carried out along a path of 62

meters on the lawns of the NPGS. The height of the optical

path above the ground was 1.1 meters.

Because of weather conditions, we made measurements on

February 27th and on March 3rd and 4th, 1982. Throughout the

experiment, the weather was fair to clear. There were light

winds (0-3 knots) from various directions, large portions of

the path were shaded by high trees, and most of the time the

grass was wet. The meteorological parameters which were taken

from the NPGS meteorological station (measured at the NPGS)

with other relevant parameters are sunarized in Table I.
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TABLE I

Information about the conditions under
which the final experiment was done

Distance Source R Day Time TOF RH% Weather
Detector (cm)

0 8.23 3-4-82 1237-1245 56 63 Clear

20 6.19 2-27-82 1626-1633 58 80 Scattered
clouds

40 6.12 3-3-82 1447-1454 56 67 Scattered
clouds

70 4.35 2-27-82 1239-1247 61 68 Clear

105 3.22 2-27-82 1053-1100 58 69 Scattered
clouds

During all the runs, the wind was between 0-3 knots from

various directions.
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Figure 15 shows the experimental results, and the function

R(y0 ,6) which is given in Eq. (IV-5).

The R value of each experimental point is an average of

16 measurements. Each measurement is the ratio of the log-

intensity variances of the folded path (given distance source-

detector) to the one way.

The y0 values of the experimental points were calculated

by

Yi M Di /L0

where Di is the distance source-detector (for the folded path),

and L0 was taken as 20 cm, to given an optimal fit with the

analytical expression.

Even though we have only five experimental points, it

seems that the experimental results match the analytical

prediction quite well and confirm it.

The outer scale value (L0 - 20 cm) which gives an optimal

fit between the experimental results and the analytical pre-

diction, seems to be relatively low, for a path which is 1.1

meters above the ground in an unstable surface layer. For

a stable surface layer, this is a reasonable value (44].
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with the analytical prediction (Rolid line)
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VI. SUMMARY

Optical scintillation along folded paths with different

angles between the two parts of the path, is a part of the

noise in many systems which measure the intensity of a re-

flected signal (e.g., a system which measures pollutant

concentrations in the atmosphere via their absorption).

In previous works the scintillation strength along these

types of paths was calculated by assuming either that the

two parts of the path are statistically independent or by

working with an "exact folding" (6 = 0).

In this work we utilized the path integral technique and

the Von Karman spectrum, to formulate a criterion for the

statistical independence of the two parts (for spherical

waves and a plane mirror). This criterion was given in terms

of the distance source-detector expressed in the outer scale

unit, namely

Yo = D/ L> 4Y0-

For the same case, we developed an analytical expression for

the ratio (R) of the log-intensity variances (folded path

to one way path) as a function of y0 ' in the Rytov region

R(y0 ) - 211/6(1 + f(y0 )]

where
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0 Y = 2L (L = the distance source-target)

-14
f(y 0 ) = e 1  Y0  > 4

1 Y0 = 0 (exact folding)

and showed that this prediction gives for the end points

(y0 = 0,y0 = 2L) the same results which were predicted in

other papers which dealt only with these points. Our ap-

proach gives an analytical prediction for intermediate values

of Y01 which others do not.

In order to verify our predictions, we designed and put

together an experimental system by modifying an existing data-

reduction system, and constructing the optical system. This

system enabled us to measure simultaneously the scintillation

strength along a one-way and a folded path, which to the

best of our knowledge, was never done before.

We measured R(y0 ) and found that

1) the maximum and the minimum values of R(y0 ) fit the

analytical prediction well.

2) the slope of the experimental value fits well the

predicted one, for an outer scale value L0 = 20.

Based on these results, we think that our analytical

expression predicts well the scintillation strength on folded

paths.
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APPENDIX A

THE SOLUTION OF EQUATION (III-11)

The right-hand side of Eq. (111-11)

S i2  A" 0f dz(Li/L0-z)z I / 3 K/ 2 (z)

is a difference of two integrals. The first one is

Li/L 0

1 = A L /L0 0 f dz z 1/3K/ 3 (z)

and the second one is

12 = A1 f 0 z4/3/3 (Z)0

The first integral

Using formula 7.14(6) of Ref. [43], we get

I1  - A1 (Li/L0 )2"2 / 3 W1/2r(5/6)z[K 1/3 (z)H_2/ 3 (z) (A-1)

L L/L

1 0

where Hr(z) Is the modified Struve function.
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Equations 7.2(12), 7.2(13) and 7.5(57) of Ref. (431 give

the following relationships.

(z) - M (Z/2) 1rm~r(m+r+1) (A-2)

K (Z) - i_ (Z) - I(z)] (A-3)r 2 Sin (rw) -r r

where I r (z) is the modified Bessel function of the first

kind.

Hr (Z) U (/2) 2mr+1 cr (m+3/2+r) r (+3/2) I (A-4)

For z -~0, formula* (A-2) and (A-4) can be approximated by

I(Z) - (z/2) /r Cr41) (A-5)

H r(z) -(z/2) r~ tr(3/2)r(3/2+r)] 1  (A-6)

inserting (A-3), (A-B) and (A-6) in Eq. (A-1.), and calcu-

lating the lower limit gives

84



lir zK 1/3 (z)H 2/ 3 (z) + H1 / 3 (z)K 2 / 3 (z)]

7 lim{- 1 / (z) [1- (z) ]H 2/3 (z) z=~ si 57 3 in ) 1 - I/3 ]-/

+ i) (Z)'1 (Z) I 1 1 3(z)zI+ in(2 f/35 [I2/3 -2/3 1H/3

= F/31 / 2 limf[(z/2)- 1/3/r (2/3)-(z/2) 1/3/r (4/3)]
z-O

x (z/2) 1/3 [r (3/2)r (5/6)f-

+ [(z/2) 2/ 3 / (1/3)- (z/2) 2 /3/f (5/3)]

x [(z/2) 4/3cr (3/2) r(11/6) O11 z

7/3I / 2 lim{az-b z5 / 3 + cz5 / 3 - dz3 }

z O

where a, b, c and d are constants.

Thus for z - 0

z[K1/3(z)H_ 2 / 3 (z) + H1/3(z)K2/ 3 (z)] = 0 (A-7)

For large z, formulae 7.13(7), 7.5(52), 7.5(63) and 7.13(4)

of Ref. 143] give, up to O(z - 2 ) ,

Kr (z) - ('/2z) 1/ 2 e-z [l + r(3ir) (2z)-1 + O 2)

(A-8)
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e~I/ 2  r (3/2+t), +2z - z

H (Z) (2z)/[ - r(/+r) + 0(-2)] (A-9)1 2-1 r ( + r)
2

N - ( 1 )m r(m ) r-2m-1 0(zr-2N-)
m-0

Using Eqs. (A-8) and (A-9) in the upper limit of Eq. (A-i),

we get (z Li/L 0 >> 1)

z[K1/ 3 (z)H_ 2 / 3 (z) + H1/3(z)K2/3 (z)]

(T/)1/2 -z{E + (11/6) -1 -2
eF( 6) (2z) + 0(z)]

.z/ - r(5/6) -1 -2x /7r(-1/6) (2z) + 0(z - )]

____r ( -/ 0(z- 1/3)]
- Fr (-1/6) (z/2) 5 3 + 0-1

+ El + F-~1 6 (2z)- + 0(z - 2)]

× [ ez z I / 2 [ l - I6) (21)-2
(e [ (1 (5/6 ) + (z2)]

1 ( ( ) -2/3 8/(z8 3 )

:W I-T I( 3 6 (z/2)- + o 11

2 + r11/6) +  (3/6)r (-1/6) r)

-2 -Z 1/2
+ 0(z - )} - * [az + (smaller powers of x)]

where a is a constant.
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Thus for z > 10, the last term is negligible and

Z[Kl/3(z)H 2/3(Z) + H1/ 3 (z)K 2/ 3 (z)] (A-10)

+ .rF (13/6) 17 -1+](-
4 r (5/TY z'l+ 0z2

Inserting Eqs. (A-7) and (A-10) in Eq. (A-I), we get for

Li/L0 > 10

A1 (Li/L0 )1T 1/2r (5/6) 1 r(3/6) 1 7  L 1
Il - 22/3 {1i + V[5/6 N (Li/L0)

-2+ 0((Li/L0) - )} (A-li)

The second integral

Using formula 7.14(3) of Ref. 143], we get

12 1 Al - z4/ 3K 4 / 3
(z) 0

0

For the upper limit we make use of Eq. (A-8) and we get, up

to Z-2 (Li/L0  z >> 1)

4/ 12 /60 z r(176'-1 -

z4/3K4/ 3 (z) - (2) l/2Z/6z1 + F (2z) O(z 2)]

which for Li/L 0 - z > 10 is almost zero (les than 10-3

For the lower limit, by use of Eqs. (A-2) and (A-5)
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4/K4/3 (Z) lir[2 4/3 1-1/31-az8/34 3  z 2 Sin (47r/3 )

21/3
= Sin(4r/3) r (-1/3)

Thus for Li/L0 > 10

= A1 i 21/3 
(A-12)

2 Sin (47r/3) r (-1/3)

We can now write the solution of Eq. (III-11)

s2 (L i/Lo0) 7rl/a r(5/6)1 (1,3/6) 1 -1

Li= A,{ 22/3 [i + ( - I(Li/L 0 )

+ 0(L /L )-2 
- 1/3

i 0Sin 1'4' 131 r 1-1/31

s2  A1 W1/2 r(5/6) 1 r(13/6) 17
L 22/3 - (Li/LO ) U + T r(5/6) - I (A-13)

_ 2 7r1/2 -1 -2
Sin(4n/3)r(-1/3)r(5/61 (Li/L0) + 0((Li/L 0 )1

7,

i

I
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APPENDIX B

NUMERICAL EVALUATION OF f(y0,)

The equation for f(y0,6) is

A2  n/2-8 Y,
f(y0 ,e) :2 f dx f y4/ 3K/ 3(y)dy

As we showed in Appendix A,

fyi y4/3K (y)dy _ -y4/3K4 3 (y) 1)

a1/3 Ka/3y0 0

un y4/ 3K4/ 3 (Y) 2 1/ (2)
Yim 4/3 Sin (41r/1) (-1/3)

Thus

A2 °Tr/2-e dcx(B-y 4/3K (y1)]

0 '0 [ 1 4/3

where

Br 21/3Sin(4r73) (-1/3) (3-l)

or

A 2flyo,e) - .[Bir/2-8) - 1 5 y 1,0,8) (3-2)
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where

8  - /2-e i/ 3 K4/ 3 (yl)s~oa) of 4/3y

0

and

y y0 /sin(2e+a)

Taking

B=28 +a

we get

i/2 y4/3K4//2++ dly4/3K4/3(Yl)

I 5 (Y )II2 f y K4 / 3 (y) + n/2

From

Y Y0/Sin B

we get

yO Cos ,d

8yl " - -sin 
i
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Therefore, for the first integral in 1 5

dO ~ sin 2a dy1

and for the second integral

Since

Sin_2_ Sin 2 a YO

CO (-Sin0) 11  y1 (Y 1 -O

Ya Y 1/3 K4 /3(y) Yb Y13x43y
Io 1/2~) Y I + yo f2 / dy

where

=O L Sin(28)/L 0  (B-3-a)

0I
-a Yo/Sin(2e) L/Lo (B-3-b)

yo/Sin(vr/2-e) -yo/Cos 0 2 i B3cI Integrating by parts (making use of formula 7.14(3) of Ref.

(43] gives
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'iY43 K Y 143Y.2

~~4/ ' K() d -(Ssc 1 (Y/y0 )y 'K 4 /3 (y)1

y 0o

Since

Sec -(1) =0,

Sec1 = ir/2- 2 0,

Se- (yb/y'0 = 6

and

y 43 K4/3(Y)

h"s a finite valuer

1 5 (y01 ) -E((r/228)Ya'
3 K4 /3(Ya) + 6 3rb K4/3yb)

- f g(y)dy - f g(y)dy

where

g(y) -Sec l(y/y0 )y 4 / 3 KI/ 3 (y). (B-41
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Hence

A2
f(Y0 e ) = A[B(t/2-e) + (O/2-8) y4 3  (B-5)

Ya Yb

+ '3 4/3 (Yb) - f g(y)dy- f g(y)dyYO 
YO

This the exact form of f(y0 ,8).

From the definition of y (Eq. (B-3-b)) we can see that
a

in all practical situations, when the path of propagation is

parallel to the ground but not too high, we can take ya >> 1.

Using formula 7.13(7) of Ref. [43], we get for y >> 1

y4/3K (y) (7/2) 1/2y e N l r5 (+m (ll/6+m) (2y) -M + 0(y-N)]

(7r (/2)i/2y e -1 + (55/72)y-1+ O(y-2)]

By taking only the first two terms in the brackets, the error

in the value of y4/3K4/3 (y) is less than 1% for y > 10. Thus

for y > 10 we can take

y4/3K4 3(y) (r/2) 1/2y5/6e-Y[l + (55/72)y
- ]

< (2w) 1/2 y5/6e-y

Comparing this expression with B, we find
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B/1000 > y 4/3K4 / 3 (Y) for y > 10

Since in Eq. (B-5), B and y 4/3 K (ya have the same

coefficient (w/2-8), we can approximate this equation by

f(y0 ,e) A0[B(7/2-6) + 0b 4 4 / 3 (Y (B-6)

Ya Yh
- f g(y)dy - f g(y)dy]

Y0  Y0

Numerical Evaluation

The numerical evaluation of Eq. (B-6) was done in the

Computer Center of the NPGS, on an IBM 3033. The program is

written in FORTRAN IV and is given at the end of this

appendix.

The important information about the program is listed

below.

1) The function f(y0 ,) is evaluated with y0 as the

independent variable. The step by which y0 is changed,

is determined by a constant (parameter) of the program.

2) The angle e is calculated from the equation

I Sin" I (Li/y0 )

3) The parameter L1 which is given for each run, is the

distance source-mirror in units of the outer scale.

Li - L/L 0
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4) The constants A 2, B are constants of the program. Their

values, which were calculated from Eqs. (111-19) and

(B-1), are

A = .7934 B = 1.12502

5) The values of the modified Bessel function of the third

kind K r (y), are calculated in different ways for the

two regions:

(a) 0.1 < y < 4

(b) 4 < y

in region (a) we used formula 7.12(21 of Ref. [43).

K r(y) 0f Cosh(rt)exp[-y tosh(t)]dt

which can be written

to0
K (Y) f cosh(rt)exp[-y Cosh(t)]dt + R(r,t 0)

Using

Cosh(t) 1 e- + e ) >1a
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we get

et

R(r,t 0) et4 Sr)Oxp(. X2 )dt
to

Takcing

x xO etO d dt and x. J
0 x

we get

Rr-1) 0-<y/

for r - 4/3; r-1= 1/3 and -(r+l) -7/3.

Therefore

R(4/3,x,) x d. 5 x+)

- 0 y/

R(4/3,x 0 ) < y (x0 + 1 +2/y)

for r - 13; r-1 -2/3 and -(r+l) -4/3,

Therefore
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1 xy2-x~y/2
R(1/3,x0) < o *-xy/2 -= _x0_

x y
0

Since in Eq. (B-6)

Yb - Y0

and we calculate f(y0 ,e) only for y0 > .1, setting

R(r,x0 ) < 10-
7 gives

x0 < 450 for r - 4/3, and

x0 < 400 for r = 1/3.

Thus, we conclude that

6
KrlY) 0 f Cosh(rt)exp(-y Cosh(t)]dt (B-8)

+ R(r,6)

where

R(r,t) < 10 - 7  for r - 4/3 or 1/3, and y > .1.

We calculate r (y) for .1 < y 1 4 by integrating Eq.

(B-8) numsrically in steps of At - 10- 3 . For y > 4,

we use formula 7.13(7) of Ref. [431

I (h) " (1/2y)1/ 2 e ([+0 1 IXT- (2y) M+0(y'N H (B-9)
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r-,

We take N - 10, and therefore for y > 4, the order of

the absolute error is less than

(7/8) 1/26-4 4-10 10 - 8

6) For Ya or Yb which are greater than 30, we use the

approximation

Ya'Yb 30f g(y)dy J g(y)dy (B-10)
Y0 Y0

For yl > 30 we can write

y1  30/ q(y)dy = J g(y)dy + R(yZ)
y0  YQ

where

Rly 1) " f Sec- YY ) ¥/3I3()d
30

yy
11

. (./2) -y 4/3'K4 /3 (Y) 130

For y 30, y/(y) is a decreasing function.
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Thus

(yl) < (w/2) (y, -30) 30 ~4/3 (30).

Taking 30< 141

R(30 < Y,< 10 4) < (w/2) 3 / 2 10 4 30 5/ 6a-30  10 7o

7) The numerical integration of Jg(y)dy is done in steps

of Ay - .01.

Additional information concerning the numerical

integration can be learnt from the program itself.

The Program
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_owl

C F I Y09TETA I CALCULATION

C SET CONSTANTS

P1a 1A4159265

A 5 10/2.

9 .:25040

12 AMftI 2 0 Vt6X,'TETA',IOX9'YB' ,12X*'F IPST TERF4',4Xg *YBK(YB)',TX
A)S,,23X III~lY) y t3X,'INTGlYBYl0,X, 91 M IN PAR 94

S CALCULATE YOVBTFTA

D 01 100

g TA-TESj
YYO/COS FTA)

S CALCVJLATE FIRST TERM
C

TER.F= 1P12-TFTAI*B
CAL4LULATE- SECOND TERM

S CALCULATF KSUE4413 I
C

XN41(3.

SCALCULATP THIRD AND FORTH TER14S



x I /~
C y~ Ng!U jVSECjYO/VO)-O

C NVSECYIOAM O( YnIY
c

V=3D.
zuYoY
XSC-ARCOS IL

8MOIX44XNI *81I'
XIAUIXIA4XS

L:BSL(X l *XN 5*8L/ 2.
XTB=XIB4Al
XNI3~O.-YO) /DG

XJaFL OAf4. I
YoYO.DG*XJ

o XSC-ARCOSEZS

,11 A+Xye V T.Y I Go TO 7

7 AT fUE
102, NI

C FOR DG.oOl
IF(Y.LF.27.1 fl-nsH

c a7R 'EF..Y Ef~-TERT -TElFO

.11WRT 16. YOTETA:,YB TEPFTERSITERSTEPT,TEPFO,FTFTETA

[o J~pA (jX~l,,4.1,99f2XF12981110ITOPIta

40
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FUNCTION 8SLIRYSI

C R-NUvSaYvRSL=KNU(Y) MODIFIED BESSEL FUNCTION OF TH* THIRD KIND
C
C lP(S.GE*4.OJ GOTO I
C

KIIUPAE DU~FEUATION 71.12(211 OF REF. 143) VOL 2
C THE INTEGRATION4 IS CARRIED IN STEPS OF DELTA T=.0O1 (ERROR DUE TO NU
C HE ICAL INTEIRAT IfN IS <10-6
C THE INTEGRATION IS TRUNCATED AT T-6.0 .FRROP DUE TO TRUNCATION <10-7

14=a6 0

00 103 K-l1041
Kluat-1
XKA=FLOAT(KII
T=XKA*DELTA
TN*T*R

CC-(-I )*Al*j

9f o..C )GO TO9
XG= EPICIR
GO ET 2

K O.R.K*EG III, XG-XG/2o
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E K Yl FOR S>4.
CPLFJ413 IN,13 I1H TIERN

c R LA91Ve EROR <10-6

M4331415926
5

AX= *5+.RA 1: I:
A~A+AS

104 CONT NUE

It I;Iifs**.5) *tEXP(SI)*AZ
RETURN
END
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